Maxwell’s Equations
Gauss’ Law for E fields
\[ \oint \vec{E} \cdot d\vec{A} = \frac{Q_{enclosed}}{\epsilon_{0}} \]
Gauss’ Law for B fields
\[ \oint \vec{B} \cdot d\vec{A} = 0 \]
Faraday’s Law
\[ \oint \vec{E} \cdot d\vec{l} = - \frac{d}{dt} \int \vec{B} \cdot d\vec{A} \]
Ampere’s Law (not modified)
\[ \oint \vec{B} \cdot d\vec{l} = \mu_{0} I_{enclosed} + ??? \]
Displacement Current
\[ I_{D} = \epsilon_{0} \frac{d \Phi_{E}}{dt} \]
Modified Ampere’s Law
\[ \oint \vec{B} \cdot \vec{dl} = \mu_{0} ( I + I_{D} ) \]
Wave Review
Other
\[ B_{y} = \frac{k}{ \omega } E_{0} cos( kz - \omega t ) \]
\[ B_{0} = \frac{E_{0}}{c} \]
\[ c = 3 \times 10^{8} m/s \]